Bulletin of Taras Shevchenko National University of Kyiv. Astronomy, no. 64, p. 26-36 (2021)

Long-term variations of Solar magnetic activity

V. Krivodubskij, Dr Hab.

Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine


The main law of the evolution of the Earth’s climate is the cyclical nature of global changes in the latter. One of the possible explanations for the cyclical nature of global climate changes is provided by the astrophysical model of fluctuations in the insolation of the Earth’s surface by solar radiation. Modern climate change is mainly associated with variations in the magnetic activity of the Sun, one of the main proxies of which are sunspots. The decrease in the number of sunspots coincides with the epochs of cooling on the Earth, while during the maximum number of sunspots warming is observed. The paper reviews cosmogenic reconstructions of long-term variations in the Sun’s magnetic activity (large minima and large maxima) during the Holocene (last 12,000 years). The accidental appearance of large minima and maxima can to some extent be reproduced by modern models of a turbulent dynamo with a stochastic drive. An important key to studying the impact of solar activity variations on the Earth’s climate is the Maunder minimum (late 17th century), during which extremely little sunspots were observed. Applying the method of analysis of rare events to these observations led researchers to conclude that the appearance of sunspots at the Maunder minimum was characterized by a weak amplitude of 22 years. The concept of continuity of magnetic cycles at this time is also confirmed by measurements of cosmogenic radionuclides in natural terrestrial archives. Therefore, today it is believed that during the Maunder minimum, the cyclic magnetic activity of the Sun did not stop, although the amplitude of the cycles was quite low. In the αΩ-dynamo model, this may be due to the fact that the magnitude of the magnetic induction of the toroidal field excited by radial differential rotation in the solar convection zone at this time did not reach the threshold value required for lifting magnetic power tubes on the solar surface (nonlinear dynamo mode). Possible physical mechanisms describing the suppression of the dynamo process at intervals when no sunspots were observed are analyzed. A scenario for explaining the north-south asymmetry of magnetic activity during the Maunder minimum is proposed. A key role in the proposed scenario is played by the special nature of the internal rotation of the Sun, revealed as a result of helioseismological experiments. The modern grand maximum of solar activity, which began in the 1940s, has ceased after solar cycle 23, and activity of the Sun seems to be returning to its normal moderate level.

Key words
Global climate changes of the Earth, sunspot cycles, magnetic fields of the Sun, cosmogenic proxies of solar activity, Maunder minimum, modern grand maximum, solar dynamo.

Lamb, H.H. 1977, Climate: Past, Present, and Future, 2.
Velychko, A.A. 1999, M.: HEOS, 260
Monyn, A.S. 2000, UFN, 70, 419
Kotliakov, V.M. 2012, Solnechno-zemnaia fyzyka, 21, 110
Rusov, V.D., Hlushkov, A.V., Vashchenko, V.N. 2003, Kyev: Yzdatelstvo “Naukova dumka”, 214
Milankovitch, M.M. 1941, Beograd: Koniglich Serbische Akademie, 636
Hays, J.D., Imbrie, J.I., Shackleton, N.J. 1976, Science, 194, 1121
Roberts, N. 2014, John Wiley & Sons, 376
Matthes, F. 1939, Transactions, American Geophys. Union, 20(4), 518
Ruddiman, W.F. 2003, Clim. Change, 61, 261
Charlson, R.J., Schwarz, S.E., Hales, J.M. et al. 1992, Science, 255, 423
Berger, A., Loutre, M.-F. 1996, Geophys. Extern., Climat et Envir., C. R. Acad. Sci.: Paris, 323(IIa), 1
Hulёv, S.K., Kattsov, V.M., Solomyna, O.N. 2008, Vestnyk RAN, 78, 1, 20
Zamolodchykov, D. H. 2013, Vestnyk Rossyiskoi akademyy nauk, 83, 3, 227
Еihenson, M.S. 1957, Lvov: Yzd-vo Lvovskoho hosunyversyteta, 292
Budyko, M.I. 1969, Tellus, 21, 611
Sellers, W.D. 1969, Journ. Appl. Meteorol., 8, 3, 392
Pudovkyn, M.Y., Raspopov, O.M. 1993, UFN, 163, 113
Lean, J. 1994, NY: Springer-Verlag, 164
Wolf, R. 1859, Mon. Not. R. Astron. Soc., 19, 85
Hale, G.E., Nicholson, S.B. 1925, Astrophys. Journ., 62, 270
Soon, W.W.-H., Yaskell, S.H. 2003, Singapore: World Scientific Publishing, 278
Usoskin, I.G. 2013, Living Reviews in Solar Physics, 10, 1
Spörer, F.W.G. 1887, Vierteljahrsschr. Astron. Ges. (Leipzig), 22, 323
Wolf, R. 1868, Astronomische Mittheilungen der Eidgenössischen Sternwarte Zürich, 24, 3, 103
Maunder, E.W. 1890, Mon. Not. R. Astron. Soc., 51, 251
Maunder, E.W. 1894, Knowledge, 17, 173
Clerke A.M. A Prolonged sunspot minimum / A.M. Clerke // Knowledge – 1894. – V.17. – P.206–207.
Eddy, J.A. 1976, Science, 192, 4245, 1189
Eddy, J.A. 1983, Solar Phys., 89, 195
Usoskin, I.G., Mursula, K., Kovaltsov, G.A. 2000, Astron. Astrophys., 354, L33
Ribes, J.C., Nesme-Ribes, E. 1993, Astron. Astrophys., 276, 549
Sokoloff, D.D., Nesme-Ribes, E. 1994, Astron. Astrophys., 288, 293
Gray, L.J., Beer, J., Geller, M. et al. 2000, Rev. Geophys., 48, 4, RG4001, 53
Usoskin, I.G., Mursula, K., Kovaltsov, G.A. 2001, Journ. Geophys. Res., 106, 16,039
Sokoloff, D.D. 2004, Solar Phys., 224, 145
Halytskyi, V.M., Sokolov, D.D., Kuzanian, K.M. 2005, Astron. zhurn., 82, 4, 378
Siegenthaler, U. 1983, Journ. Geophys. Res.-Oc. Atm., 88, 3599
Masarik, J., Beer, J. 2009, Journ. Geophys Res-Atmos., 114, D11103
Heikkilä, U., Beer, J., Feichter, J. 2009, Atmos. Chem. Phys., 9, 515
Steinhilber, F., Abreu, J.A., Beer, J. et al. 2012, Proceedings of the National Academy of Sciences, 109, 16, 5967
Beer, J., Raisbeck, G.M., Yiou, F. 1991, Tucson, AZ: University of Arizona Press., 343
Beer, J., Tobias, S., Weiss, N. 1998, Solar Phys., 181, 237
Beer, J., Mende, W., Stellmacher, R. 2000, Quat. Sci. Rev., 19, 403
Hoyt, D.V., Schatten, K.H. 1996, Solar Phys., 165, 181
Hoyt, D.V., Schatten, K.H. 1998, Solar Phys., 181, 491
Wang, Y.-M., Sheeley, N.R. 2003, Astrophys. Journ., 591, 1248
Kovaltsov, G.A., Usoskin, I.G., Mursula, K. 2004, Solar Phys., 224, 95
Charbonneau, P. 2020, Living Reviews in Solar Physics, 7, 4, 1
Miyahara, H., Masuda, K., Muraki, Y. et al. 2006, Journ. Geophys. Res., 111, A10, A03103
Miyahara, H., Sokoloff, D., Usoskin, I.G.. 2006, In: Advances in Geosciences, V.2: Solar Terrestrial (ST), 1
Usoskin, I.G., Solanki, S.K., Kovaltsov, G.A. 2007, Astron. Astrophys., 471, 301
Moss, D., Sokoloff, D., Usoskin, I., Tutubalin, V. 2008, Solar Phys., 250, 221
Usoskin, I.G., Sokoloff, D., Moss, D. 2009, Solar Phys., 254, 345
Vainshtein, S.Y., Zeldovych, Ya.B., Ruzmaikyn, A.A. 1980, M.: Nauka, 352
Krause, F., Rädler, K.-H. 1980, Oxford: Pergamon Press, Ltd., 271
Hoyng, P. 1993, Astron. Astrophys., 272, 321
Ossendrijver, M.A.J.H., Hoyng, P., Schmitt, D. 1996, Astron. Astrophys., 313, 938
Brandenburg, A., Spiegel, E.A. 2008, Astron. Nachr., 329, 351
Kryvodubskyi, V.N. 1984, Astron. Zhurnal, 61, 2, 354
Krivodubskij, V.N. 2005, Astron. Nachr., 326, 1, 61
Krivodubskij, V.N. 2021, Advances in Space Research, 68, 9, 3943
Krivodubskij, V.N. 2001, Astronomy Reports, 45, 9, 738
Krivodubskij, V.N. 2001, Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions. IAU Symp. 203, 118
Kryvodubskyj, V.N. 2006, Kinematics Phys. Celestial Bodies, 22, 1, 1
Arlt, R. 2009, Solar Phys., 255, 143
Beer, J., Tobias, S.M., Weiss, N.O. 2018, Mon. Not. R. Astron. Soc., 473, 2, 1596
Howe, R., Christensen-Dalsgaard, J., Hill, F. 2000, Science, 287, 2456
Howe, R. 2009, Living Rev. Sol. Phys., 6 (1), 1
Parker, E.N. 1979, Oxford: Clarendon Press
Kryvodubskyi, V.N. 1984, Astron. Zhurnal, 61, 3, 540
Stix, M. 2002, Berlin: Springer-Verlag
Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H. 1919, Astrophys. Journ., 49, 153
Zhukova, A., Khlystova, A., Abramenko, V., Sokoloff, D. 2022, Mon. Not. R. Astron. Soc., 512, 1, 1365
Pipin, V.V., Sokoloff, D.D., Usoskin, I.G. 2012, Astron Astrophys., 542, A26, 11
Eddy, J.A., Gilman, P.A., Trotter, D.E. 1976, Solar Phys., 46, 3
Platt, N., Spiegel, E.A., Tresser, C. 1993, Phys. Rev. Lett., 70, 279
Dikpati, M., Charbonneau, P. 1999, Astrophys. Journ., 518, 508
Charbonneau, P., Dikpati, M. 2000, Astrophys. Journ., 543, 1027
Charbonneau, P., MacGregor, K.B. 1997, Astrophys. Journ., 486, 502
Yoshimurа, H. 1978, Astrophys. Journ., 226, 706
Moreno-Insertis, F. 1986, Astron. Astrophys., 166, 291
Fan, Y., Fisher, G.H., DeLuca, E.E. 1993, Astrophys. Journ., 405, 390
Caligari, P., Moreno-Insertis, F., Schüssler, M. 1995, Astrophys. Journ., 441, 886
Durney, B.R. 2000, Solar Phys., 196, 421
Charbonneau, P. 2001, Solar Phys., 199, 385
Usoskin, I.G., Solanki, S.K., Schüssler, M. et al. 2003, Phys. Rev. Lett., 91, 211101, 4
Usoskin, I.G., Mursula, K., Solanki, S.K. et al. 2003, Astron. Astrophys. 413, 745
Solanki, S.K., Usoskin, I.G., Kromer, B. et al. 2004, Nature, 431, 1084
Barnard, L., Lockwood, M., Hapgood, M.A. et al. 2011, Geophys. Res. Lett., 38, L16103, 6
Abreu, J.A., Beer, J., Steinhilber, F. et al. 2008, Geophys. Res. Lett. 35, L20109, 4
Abreu, J.A., Beer, J., Ferriz-Mas, A. et al. 2012, Astron. Astrophys., 548, A88, 9

Full text PDF

DOI: https://doi.org/10.17721/BTSNUA.2021.64.26-36