Bulletin of Taras Shevchenko National University of Kyiv. Astronomy, no. 59, p. 20-29 (2019)

Magnetic fields and thermodynamic conditions in the pre-peak phase of M6.4 / 3N solar flare

V. Lozitsky, DrSci
Taras Shevchenko National University of Kyiv, Kyiv

M. Stodilka,  DrSci
Ivan Franko National University of L’viv, Lviv 


Abstract

We present a study of the pre-peak phase of the solar flare of M6.4 / 3N class which arose on July 19, 2000 in the NOAA 9087 active region. The effective magnetic field Beff was measured using the  FeI 6301.5 Ǻ, FeI 6302.5 Ǻ, Hα and Hβ spectral lines. It was found that at the brightest place of the flare, which was projected onto a small sunspot of N polarity, Beff was close to each other on all four lines and corresponded to 1.0-1.2 kG. At the same time, the modulus of the magnetic field at the level of FeI 6302.5 formation, determined by the splitting of peaks V of the Stokes parameter and the localization of the σ-components in the I ± V profiles, was in the range 1.6–2.6 kG. The bisectors of the I + V and I – V profiles of the FeI 6301.5 line are parallel to each other, indicating a simple one-component structure of the magnetic field at the level of the middle photosphere under the flare. The Balmer decrement of Imax (Hα) / Imax (Hβ) by Hα and Hβ lines was 1.16. The semi-empirical model of the photospheric layers of the flare was constructed using Stokes I observations of non-magneticsensitive FeI 5123.7 and 5434.5 lines by solving the inverse equilibrium transfer problem using Tikhonov stabilizers. For the distribution of temperature with height, the effects of deviation from the LTE were found to be significant for the layers of the lower photosphere corresponding to the heights h ≥ 0 (i.e. τ 5 ≤ 1). In the entire thickness of the photosphere (h = 0–500 km), the flare temperature is lower compared to the non-perturbed atmosphere, while it is slightly higher for h> 500 km. The micro-turbulent velocity is increased at altitudes h> 200–500 km, while at altitudes h <200 km it is reduced. The obtained results indicate that the upper photosphere and the lower chromosphere are perturbed during solar flares, even when the magnetic field is quasi-homogeneous in the lower layers (middle photosphere).

Key words
Sun, solar activity, solar flares, flare on July 19, 2000 of M6.4 / 3N class, solar magnetic fields, semi-empirical model

References
Abramenko V.I., Baranovsky E.A., 2004, Solar Physics, 220, 1, 81
Andriets E.S., Kondrashova N.N., Kurochka E.V., Lozitsky V.G., 2012, Bulletin of the Crimean Astrophysical Observatory, 108, 1, 1
Asplund M., Nordlund А., Trampedach R., Allende Prieto C., Stein R.F., 2000, Astron. and Astrophys, 359, 729
Avrett E.H., Loeser R.,1969, SAO, Special Report, 303
Baranovsky E.A., Lozitsky V.G., Tarashchuk V.P., 2009, Kinematics and Physics of Celestial Bodies, 25, 5, 373
Carlsson M., Rutten R. J., Bruls J. H. M. J., Shchukina N. G., 1994, Astron. Astrophys, 288, 860
Choudhuri, A. R., 1992, In: NATO ASIC Proc. 375: Sunspots. Theory and Observations, (Eds.) J. H. Thomas, N. O. Weiss, 243
Cowley Ch., 1970, New York – London – Paris, Gordon and Breach Science Publishers, 255
Cristaldi A., Ermolli I., 2017, Astrophys. J., 841, 115
de la Cruz Rodríguez Jaime, Leenaarts Jorrit, Asensio Ramos Andrés., 2016, Astrophys. J. Let., 830, 30
Almeida J., Kneer F., 2003, Astron. Astrophys., 407, 741
Gurtovenko E.A., Kostik R.I., 1989, Kiev, Naukova Dumka, 200
Joshi J., 2014, PhD Thesis, Technische Universität Braunschweig, ISBN 978-3- 944072-01-2
Khomenko E.V., Collados, M., Solanki, S.K., Lagg A., Trujilo Bueno J., 2003, Astronomy and Astrophysics, 408, 1115
Khomenko E., Vitas N., Collados M. et  al., 2018, Astronomy & Astrophysics, 618, id.A87
Kondrashova N.N., 2013, Monthly Notices of the Royal Astronomical Society, 431, 1417
Kuckein C., Collados M., Manso Sainz R., 2015, The Astrophysical Journal Letters, 799, 2, article id. L25, 5
Kurochka E.V., Lozitsky V.G., 2005, Kinematics and Physics of Celestial Bodies, Suppl., 5, 143
Kurochka E.V., Lozitsky, V.G., Osyka O.B., 2008, Kinematics and Physics of Celestial Bodies, 24, 4, 308
Landi Degl’Innocenti E., 1982, Solar Phys., 77, 1/2, 285
Lozitska N.I., Lozitsky V.G., Andryeyeva O.A. et al., 2015, Advances in Space Research, 55, 897
Lozitsky V.G., 2016, Adv. Space Res., 57, 398
Lozitsky V.G., Baranovsky E.A., Lozitska N.I., Tarashchuk V.P., 2018, Monthly Notices of the Royal Astronomical Society, 477, 2, 2796
Lozitsky V.G., Staude J., 2009, Journal of Astrophysics and Astronomy, 29, 387
Maltby P., Avrett E. H., Carlsson M., Kjeldseth-Moe O., Kurucz R. L., Loeser R., 1986, Astrophys. J., 306, 284
Moore Ch.E., M.G.J. Minnaert M.G.J., Houtgast J., 1966, National Bureau of Standards, Washington, DC, 349
Parker E. N., 1979, Astrophys. J., 234, 333
Parker E.N., 2001, Chinese Journal of Astronomy and Astrophysics, 1, 2, 99
Rachkovsky D.N., Tsap T.T., Lozitsky V.G., 2005, Journal of Astrophysics and Astronomy, 26, 435
Rempel M., Schüssler M., Knölker M., 2009, Astrophys. J., 691, 640
Ruiz Cobo B., del Toro Iniesta J.C., 1992, Astrophys. J., 398, 375
Shchukina N.G., Sukhorukov, A.V., Trujillo Bueno J., 2017, Astronomy & Astrophysics, 603, id.A98, 16
Schüssler M., Vögler A., 2006, Astrophys. J., 641, 73
Socas-Navarro H., 2006, Astrophys. J. Sup. Ser., 169, 439
Socas-Navarro H., Ruiz Cobo B., Trujillo Bueno J., 1998, Astrophys. J., 507, 470
Spruit H. C., 1981, Proc. of the Conference, Sunspot, NM, July 14-17, 98
Stenflo J.O., 1973, Solar Physics, 32, 41
Stodilka M.I., 2003, Kinematika i Fizika Nebesnykh Tel., 19, 334
Sudol, J.J., Harvey, J.W., 2005, The Astrophysical Journal, 635, 1, 647
Tsuneta S., Ichimoto K., Tatsukawa Y. et al., 2008, Solar Phys., 249, 167
Varady M., Karlicky’ M., Kasparova’ J., Heinzel P., The 10th European Solar Physics Meeting, 9 – 14 September 2002, Prague, 521
Vernazza J. E, Avrett E. H., Loeser R., 1981, Astrophys. J. Sup. Ser., 45, 635
Zemanek E.N., Stefanov A.P., 1976, Vestnik Kiev Univ., Seria Astronomii, 18, 20

Full text PDF

DOI: https://doi.org/10.17721/BTSNUA.2019.59.20-29