Bulletin of Taras Shevchenko National University of Kyiv. Astronomy, no. 55, p. 22-29 (2017)

The alpha effect of Babcock-Leighton in the in the surface layers of the Sun

V. Krivodubskij, Dr. Sci.
Astronomical Observatory of Taras Shchevchenko National University of Kyiv, Kyiv

Abstract
The paper reviews recent studies of cyclicity of magnetic activity of the Sun based on the αΩ-dynamo model. According to the αΩ-dynamo model the radial gradient of angular velocity ∂Ω/∂r acts on the poloidal magnetic field BP, as a result generating the toroidal magnetic field BT (Ω-effect). Meanwhile helical turbulence, acting on the toroidal field BT, regenerates new poloidal magnetic component of opposite sign – BP. Since the differential rotation ∂Ω/∂r is inherent in almost stable regularity in time, there is a functional dependence between the observed values of the poloidal BP and toroidal BT magnetic fields. Poloidal magnetic field BP in minimum epoch of the solar cycle (when field BP has maximum value) determines the amount of the generated toroidal magnetic field BT (which is responsible for intensity of the spots activity in the coming cycle). This allows us to predict the amplitude (Wolf numbers W) and the strength (the total area of spots) of cycle for the measured field BP at the beginning of the cycle. However, for a long time in past there were no detected the positive correlations between the characteristics of sunspots cycle (Wolf number or the total area of spots) and polar magnetic flux (which characterized the value of poloidal field BP) at the end of the cycle. In the terms of dynamo theory it was supposedly evidenced of the absence of functional dependence poloidal fields BP at the end of cycles on the toroidal field BT in maximum of cycles. As it turned out later, this was due to the fact that the surface α-effect of Babcock–Leighton (which defined by tilt angles of the bipolar magnetic fields, turbulent diffusion and meridional circulation, and causes the regeneration of the poloidal field) is characterized by random fluctuations in time and space. The situation, however, changed drastically after the introducing of the parameter of magnetic strength spots of cycle, which is a product of the area of spots cycle and tilt angles of the bipolar magnetic groups. By combining assimilation of the area of spots, the distance between the weighted canters of opposite magnetic polarity and the tilt angles, the functional dependence of polar magnetic flux (which is an indicator of poloidal field BP) on the assimilated parameter magnetic strength of sunspots (which describes the relative intensity of the toroidal field BT) was restored. Within the framework of the αΩ-dynamo this indicates that the surface α-effect of Babcock–Leighton leads to the generation of the poloidal magnetic
field at the end of the current cycle, and assimilated parameter of magnetic strength spots of cycle is an integral component for future forecasts of solar activity based on the dynamo models.

Key words
Sun, turbulence and magnetic fields, sunspots, cycles of activity, dynamo model, forecasts of solar activity

References
1. Krause F. Mean Field Magnetohydrodynamics and Dynamo Theory / F. Krause, K.-H. Rädler. – Oxford : Pergamon Press, Ltd., 1980. – 271 p.
2. Parker E. N. The formation of sunspots from the solar toroidal field / E. N. Parker // Astrophys. J., 1955. – Vol. 121. – P. 491–507.
3. Steenbeck M. The generation of stellar and planetary magnetic fields by turbulent dynamo action / M. Steenbeck, F. Krause // Zeits. Naturforsch, 1966. – Vol. 21a. – P. 1285–1296.
4. Babckok H. W. The topology of the Sun’s magnetic field and the 22-year cycle / H. W. Babckok // Astrophys. J., 1961. – Vol. 133. – P. 572–1033.
5. Leighton R. B. A magneto-kinematic model of the solar cycle / R. B. Leighton // Astrophys. J., 1969. – Vol. 156. – P. 1–26.
6. Ossendrijver M. The solar dynamo / M. Ossendrijver // Astron. Astrophys. Rev., 2003. – Vol. 11, N 4. – P. 287–367.
7. Krivodubskij V. N. Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone / V. N. Krivodubskij // Astron. Reports., 1998. – Vol. 42. – P. 122–126.
8. Krivodubskij V. N. The structure of the global solar magnetic field excited by the turbulent dynamo mechanism / V. N. Krivodubskij //Astron. Reports., 2001. – Vol. 45. – P. 738–745.
9. Krivodubskij V. N. Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone // Astron. Nachrichten. – 2005. – 326, N 1. – P. 61–74.
10. Krivodubskij V. N. Small scale alpha-squared effect in the solar convection zone / V. N. Krivodubskij // Kinematics and Physics of Celestial Bodies, 2015. – Vol. 31, N 2. – P. 55–64.
11. Erofeev D. V. An observational evidence for the Babcock-Leighton dynamo scenario / D. V. Erofeev // Proc. IAU Symp., 2004. – Vol. 223. – P. 97–98.
12. Sunspot group tilt angles and the strength of the solar cycle / M. Dasi-Espuig, S. K. Solanki, N. A.Krivova et al. // Astronomy. Astrophys., 2010. – Vol. 518, id. A7. – 10 p.
13. Kitchatinov L. L. Does the Babcock-Leighton mechanism operate on the Sun? / L. L. Kitchatinov, S. V. Olemskoy // Astron. Lett., 2011. – Vol. 37. – P. 656–658.
14. Kitchatinov L. L. The solar dynamo: Inferences from observations and modelling / / L. L. Kitchatinov //Geomagnetism. Aeronomy, 2014. – Vol. 54. – P. 867–876.
15. Karak B. B. Babcock-Leighton solar dynamo: The role of downward pumping and the equatorward propagation of activity / B. B. Karak, R. Cameron // Astrophys. J., 2016. – Vol. 832, N 1, article id. 94. – 12 p.
16. Miesch M. S. A three-dimensional Babcock-Leighton solar dynamo model: Initial results with axisymmetric flows / M. S. Miesch, K. Teweldebirhan // Advances in Space Research, 2016. – Vol. 58, N 8. – P. 1571–1588.
17. Hazra G. A theoretical study of the build-up of the Sun’s polar magnetic field by using a 3D kinematic dynamo model / G. Hazra, A. R. Choudhuri, M. S. Miesch // Astrophys. J., 2017. – Vol. 835, N 1, article id. 39. – 16 p.
18. Vainshtein S. I. The Turbulent Dynamo in Astrophysics / S. I. Vainshtein, Ya. B. Zel’dovich, A. A. Ruzmaikin. – Moscow : Nauka, 1980. – 352 p. (in rus.: Вайнштейн С. И. Турбулентное динамо в астрофизике / С. И. Вайнштейн, Я. Б. Зельдович, А. А. Рузмайкин. – М. : Наука, 1980. – 352 с.).
19. Svalgaard L. Sunspot cycle 24: Smallest cycle in 100 years? / L. Svalgaard, E. W.Cliver, Y. Kamide // Geophys. Research Lett., 2005. – Vol. 32, N 1. – CiteID L01104.
20. Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies / A. Muñoz-Jaramillo, M. Dasi-Espuig, L. A. Balmaceda, E. E. DeLuca // Astrophys. J. Lett., 2013. – Vol. 767, Is. 2, article id. L25. – 7 p.
21. Hathaway D. H. The solar cycle / D. H. Hathaway // Living Rev. Solar Phys., 2015 – Vol. 12, N 4. – P. 1–87.
22. Charbonneau P. Dynamo models of the solar cycle / P. Charbonneau // Living Rev. Solar Phys., 2010. – Vol. 7, N 3. – P. 1–91.
23. Cameron R. H. The global solar dynamo / R. H. Cameron, M. Dikpati, A. Brandenburg // Space Sci. Rev., 2016. (arXiv: 1602.01754v1 [astro-ph.SR] 4 Feb 2016).
24. Hale G. E. The low of Sun-spot polarity / G. E. Hale, S. B. Nicholson // Astrophys. J., 1925. – Vol. 62. – P. 270.
25. Using dynamo theory to predict the sunspot number during cycle 21 / K.H. Schatten, P. H. Scherrer, L. Svalgaard, J. M. Wilcox // Geophys. Research Lett., 1978. – Vol. 5. – P. 411–414.
26. Large-scale magnetic field and sunspot cycles / V. I. Makarov, A. G. Tlatov, D. K. Callebaut et al. // Solar Phys., 2001. – Vol. 198, N 2. – P. 409–421.
27. Jiang J. Solar activity forecast with a dynamo model / J. Jiang, P. Chatterjee, A R. Choudhuri // MNRAS, 2007. – Vol. 381, N 4. – P. 1527–1542.
28. The magnetic polarity of sun-spots / G. E. Hale, F. Ellerman, S. B. Nicholson, A. H. Joy // Astrophys. J., 1919. – Vol. 49. – P. 153–186.
29. Wang Y.-M. Average properties of bipolar magnetic regions during sunspot cycle 21 / Y.-M. Wang, N. R. Jr. Sheeley // Solar Phys., 1989. – Vol. 124, N 1. – P. 81–100
30. Wang Y.-M. Evolution of the Sun’s polar fields during sunspot cycle 21 – Poleward surges and long-term behavior / Y.-M. Wang, A. G. Nash, N. R. Sheeley Jr. // Astrophys. J., 1989. – Vol. 347. – P. 529–538.
31. Komm R. W. Meridional flow of small photospheric magnetic features / R. W. Komm, R. F. Howard, J. W. Harvey // Solar Phys., 1993. – Vol. 147, N 2. – P. 207–223.
32. Olemskoy S. V. Fluctuations in the alpha-effect and grand solar minima / S. V. Olemskoy, A. R. Choudhuri, L. L. Kitchatinov // Astron. Reports., 2013. – Vol. 57, N 6. – P. 458.
33. URL: http://www.gao.spb.ru/database/csa/groups_r.htm.
34. Solar cycle propagation, memory, and prediction: insights from a century of magnetic proxies / A. Muñoz-Jaramillo, M. Dasi-Espuig, L. A. Balmaceda, E. E. DeLuca // Astrophys. J. Lett., 2013. – Vol. 767, L25. – 7 p.
35. A homogeneous database of sunspot areas covering more than 130 years / L. A. Balmaceda, S. A. Solanki, N. A. Krivova, S. Foster // J. Geophys. Research, 2009. – Vol. 114, Iss. A7. – CiteID A07104.
36. Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field / A. Muñoz-Jaramillo, N. R. Sheeley, J. Zhang, E. E. DeLuca // Astrophys. J., 2012. – Vol. 753, N 2, article id. 146. – 14 p
37. URL: ftp:ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_REGIONS.

Full text PDF

DOI: https://doi.org/10.17721/BTSNUA.2017.55.22-29